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Abstract: Thermodynamic equilibrium requires a bal-
ance of thermal, mechanical, and chemical forces. The
general equation for mechanical equilibrium between
two phases describes capillary effects in porous mater-
ials, important in both unsaturated water flow and in
understanding ice/water interfaces in freezing soil. The
Gibbs–Duhem equation, which relates changes in chem-
ical potential of a substance to changes in temperature,
pressure, and presence of other chemicals, is of critical
importance in understanding the flow of water in freezing
soils. Osmotic pressure, related to the chemical poten-
tial of the substance, is useful in formulating expres-
sions for total soil water pressure because soil water
contains solutes, and the influence of soil particle sur-
faces can be “approximated” as solutes. It is the gradient
in the total soil water pressure that drives flow to the
freezing front in soils. The generalized Clapeyron equa-
tion, based on the thermodynamic equilibrium of ice and
water in soils (e.g., Loch 1978), is utilized by the thermo-

dynamically based models of Miller (1978) and Gilpin
(1980). In these models Fourier’s Law and Darcy’s Law
describe heat and mass transfer in the frozen fringe,
respectively, and mass flow and heat flow are coupled
by one equation that describes heat transfer in the frozen
soil. Ice lenses start to grow when the effective stress in
the frozen fringe becomes zero (Miller 1978, Gilpin
1980). Once an ice lens is established, liquid water is
removed from the adjacent pores because of phase
change, and water flows up through the soil to replenish
the liquid water. If the rate of water loss caused by phase
change is matched by the rate of water flow to replenish
the liquid water, the ice lens will continue to grow in
thickness. If the hydraulic conductivity of the soil limits
the rate of water replenishment to the ice lens for the
given rate of heat loss, soil water will freeze at increasing
depths with associated changes in the depth and thick-
ness of the frozen fringe.
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PREFACE

This report was prepared by Dr. Karen S. Henry, Research Civil Engineer, Civil Engi-
neering Research Division, U.S. Army Cold Regions Research and Engineering Laboratory
(CRREL), Engineer Research and Development Center (ERDC), Hanover, New Hamp-
shire.

This report was originally prepared as a paper for Geology 600 for Dr. Bernard Hallet,
Professor of Glacial and Periglacial Geomorphology, Department of Geological Sciences,
University of Washington, Seattle, while the author was on Department-of-the-Army-spon-
sored long-term training. Final publication was funded by U.S. Army Corps of Engineers
work unit AT24-SP-006, Thermodynamics of Frost Heave.

While taking Professor Hallet’s Geology 600 course, the need for introductory material
on this topic became evident. Therefore, this report is intended to be used as a primer on the
thermodynamics of frost heave in soils for those who are beginning to study this interesting
phenomenon.

The author thanks Dr. Bernard Hallet, Professor of Glacial and Periglacial Geomorphol-
ogy, Department of Geological Sciences, University of Washington, Seattle, and Dr. Patrick
Black of CRREL for technically reviewing this report. Dr. Samuel Colbeck also provided
technical review and encouragement to publish this work.

This publication reflects the personal views of the author and does not suggest or reflect
the policy, practices, programs, or doctrine of the U.S. Army or Government of the United
States. The contents of this report are not to be used for advertising or promotional pur-
poses. Citation of brand names does not constitute an official endorsement or approval of
the use of such commercial products.
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A Review of the Thermodynamics of Frost Heave

KAREN S. HENRY

INTRODUCTION

During frost heaving of soil when the soil is freez-
ing from the top down, water in the soil pores flows
upward to the freezing front because of a gradient in
the soil moisture pressure (or tension). This occurs even
when the soil pores are not saturated. Ice lenses form
and grow at or slightly above the freezing front and
cause great uplifting forces. Understanding this pro-
cess is not intuitive. However, thermodynamics, or the
study of heat and work and the conversion of one of
these energy forms to the other, provides a means of
understanding frost heave. This report was written to
make thermodynamic concepts accessible and to pro-
vide the background needed to help engineers and sci-
entists understand two aspects of soil freezing: the flow
of water to the freezing front, and the initiation of ice
lenses that cause the soil to heave. It is a review and
summary of 1) the thermodynamic principles that are
important in modeling frost heave in soils, and 2) past
research using equilibrium thermodynamics that has
contributed to the understanding of frost heaving. The
intent is for most readers to use this report without ref-
erence to texts. For a more complete study of thermo-
dynamics, Castellan (1983) is highly recommended.
Some difficult concepts are also illuminated very well
by Silver and Nydahl (1977).

The sections “Thermodynamic fundamentals” and
“Thermodynamic equilibrium” present material from
university senior-level physical chemistry, with a spe-
cial emphasis on topics relevant to freezing soils. Ther-
modynamic definitions, concepts, and fundamental
equations are provided in “Thermodynamic fundamen-
tals.” “Thermodynamic equilibrium” presents thermo-
dynamic equilibrium conditions and conditions under
which thermodynamic processes such as phase change
will spontaneously occur. “Thermodynamic equilibri-

um” also includes definitions of thermal, mechanical,
and chemical equilibrium, and the relationships among
forces acting on systems in equilibrium are also exam-
ined. Significant contributions to the understanding of
frost heave, based on equilibrium thermodynamics, are
reviewed in “Thermodynamic treatment of frost heave.”
This section begins with early work that led to the devel-
opment of thermodynamic relations between water and
ice in soil, followed by a brief presentation of the signif-
icant aspects of two models of frost heaving. “Summary
of current understanding of frost heave” summarizes
our current understanding of frost heave without the
use of equations.

This report is an introduction to the thermodynam-
ics of frost heave, and is not a comprehensive review
of all recent work on the subject or on frost heave mod-
eling. Nonetheless, two areas of significant develop-
ment are mentioned below for those readers who want
to pursue this topic in depth. This report will provide
some of the background required for further study of
the material discussed below.

First, considerable progress has been made toward
understanding the nature of the unfrozen water that
persists in soils at temperatures below the freezing tem-
perature of bulk water (e.g., Dash et al. 1995, Wettlaufer
1998). The focus of the work by Dash et al. (1995) and
Wettlaufer (1998) is on isolating the roles that curva-
ture, confinement in pores, physical characteristics of
ice surfaces, and the presence of impurities in soil water
play on the thickness and mobility of unfrozen water in
freezing soils.

Second, regarding the ability to predict the defor-
mation of soils in response to freezing or thawing, engi-
neers have had great success in predicting material
behavior by treating it as a continuum. Blanchard and
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Fremond (1985) published a model of soil frost heav-
ing and thaw settlement that utilized the continuum
approach. The constitutive laws used to describe the
soil behavior were elastic for the unfrozen soil and
viscoplastic when frozen. Michalowski (1992, 1993)
extended that work to account for more factors affect-
ing frost heave (e.g., three-dimensional stress state of
the soil). He used constitutive relations to describe the
rate of deformation of the soil during frost heave, as
well as the constitutive relations of heat conduction
(Fourier’s Law), water flow (Darcy’s Law), and a con-
stitutive law describing the relation between stress and
strain in the frozen soil or soil skeleton. Recently, Harti-
kainen and Mikkola (1997) reported progress on using
equilibrium thermodynamics to predict the movement
and phase change of water in freezing soil along with
constitutive models to predict the deformation of the
soil due to frost heave.

THERMODYNAMIC FUNDAMENTALS

Definitions, first, and second laws
A thermodynamic system is a portion of the uni-

verse set aside for study. There are three types: open,
closed, and isolated. An open system can exchange
energy and mass with its surroundings. The open sys-
tem is thus specified by space rather than the matter
contained within the space, and the volume occupied
by an open system is a control volume. In freezing soil,
a volume through which water, heat, and soil flow is an
open system. A closed system can exchange only ener-
gy with its surroundings and is modeled with a control
mass; a mass of soil through which heat but no matter
flows is a closed system. An isolated system can exchange
neither energy nor mass with its surroundings.

A property is a system characteristic that can be
measured or determined from other measurements. The
state of a system is defined when all of its properties
are specified. Properties are classified as either exten-
sive or intensive. Extensive properties are additive,
meaning that the value of the property is obtained by
summing the values of the property in every part of the
system. These include mass, volume, length, area, and
number of moles of a species in a system. Intensive
properties do not depend on system size. These include
pressure, temperature, specific volume, stress, surface
tension, and force per unit length.

A change in the state of a system results from pro-
cesses such as energy or mass flow across its bound-
aries or internal processes that cause its properties to
change. A process is a series of events causing a change
of state, and a path is the sequence of states that the
system assumes between initial and final states. There
are many different types of processes, or stages in pro-

cesses, including adiabatic (no heat transfer between
system and surroundings), isothermal, isobaric, or iso-
choric (constant volume).

Equilibrium is defined as a state of rest—i.e., the
system properties do not change with time. Thermody-
namic equilibrium is an equilibrium state where there
is a balance of thermal, mechanical, and chemical
forces. If a system always deviates from equilibrium
only infinitesimally during a process, then the process
is reversible. Real processes are always irreversible, but
reversible processes are studied to determine maximum
or minimum amounts of work that can be produced by
them.

Heat flows across a system boundary in response to
a temperature gradient. Heat is path-dependent, mean-
ing that the amount of heat flow that occurs depends on
the process itself. Heat appears only at the boundary of
a system during a change in state. It is manifested by
temperature change in the surroundings.

Work is energy that flows across the boundary of a
system during a change in state that is completely con-
vertible to lifting a weight in its surroundings. Like heat,
work is path-dependent, appearing only at the bound-
ary of a system during a change in state, and is mani-
fested by an effect in the surroundings (e.g., the lifting
of a weight). It occurs as a result of a potential gradient
other than temperature (e.g., a pressure gradient). The
equation for mechanical work is δW = Fdl, where F
refers to a “generalized force,” and l refers to a “gener-
alized displacement.” (The symbol δ indicates path
dependence and d, path independence.) If the force is
independent of direction and the rate of change of the
process (i.e., it is path-independent), then the work mode
is reversible (that is, the amount of energy added in a
forward process is equal to the amount of energy
removed in a reverse process).

All intensive thermodynamic properties are gener-
alized forces, and all extensive properties are general-
ized displacements—including length, volume, area,
mass, and number of moles of a substance. Reversible
work is an idealization of real processes—examples are
frictionless pulleys or resistanceless wires. Types of
reversible work are defined in Table 1. For nonrevers-
ible work, relationships other than those given in Table
1 must be used to account for the energy that is not
converted to work.

Entropy is the extensive property of a system asso-
ciated with heat energy, and temperature is the inten-
sive property. Heat can be expressed as δQrev = TdS,
where S is the entropy. Entropy is a measure of the
decrease in the system’s ability to do work. It can be
associated with mass entering or leaving a system, or
both, and can be exchanged across system boundaries
because of heat transfer.

2
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Heat capacity, C, is the amount of heat, δQ, that
must be added to a system to change the temperature
by dT, or  C = δQ/dT. Cv is the heat capacity at constant
volume, and Cp is the heat capacity at constant pres-
sure.

The fundamental thermodynamic principles needed
for the study of freezing soils are

The zeroth: If two systems are in thermal equilibri-
um with a third, then they are in equilibrium with each
other.

Conservation of mass: Matter is not created or
destroyed; it can only be changed to other chemical
species or to energy.

First law: Energy is conserved. A mathematical state-
ment of the first law is

dU = δQ – δW, or ∆U = Q – W (1)

where U is the energy of the system.
Second law: Every system that is left to itself will

change toward a condition in which its ability to do
work will have decreased. Another way to express the
second law is that entropy can be produced, but never
destroyed. A mathematical statement of the second law
is

dS
Q

T
dS

Q

T
> >∫∫

δ δ
, .or (2a)

For all irreversible cycles

δQ

T∫ < 0 (2b)

and for any change of state in an isolated system

dS > 0. (2c)

Other important definitions include the composite
functions, so called because they are combinations of

other functions (properties) of a state. The compos-
ite functions are Gibbs free energy, enthalpy, and
Helmholtz free energy. They were defined for con-
venience from applying the first and second laws to
systems under various constraints. For example,
Gibbs free energy (a quantity of great interest in study-
ing freezing soils) was developed to help study sys-
tems that exist at constant temperature and pressure.
Gibbs free energy, G: For constant temperature and

pressure, d(PV) = PdV and d(TS) = TdS.  Applying
the first law in the form δQ = dU + δW and the rela-
tion  that TdS ≥ δQ* (from eq 2a), we obtain TdS ≥
dU + δW, where δW = PdV + δWa and Wa is all of the
work other than PV work. Thus, –d(U + PV – TS) ≥
δWa, and G ≡ U + PV – TS becomes a convenient
definition. Thus, at equilibrium ∂G/δWa = 0; and, ∂G/

δWa < 0 for a spontaneous transformation to occur at con-
stant temperature and pressure. This will be discussed
again in the section “Thermodynamic equilibrium.”

Enthalpy, H: H ≡ U + PV ≡ G + TS. Enthalpy applies
to systems at constant pressure, such as laboratory sys-
tems at atmospheric pressure. It was developed simi-
larly to Gibbs free energy by applying the first law at
constant pressure.

Helmholtz free energy, A: A ≡ U – TS ≡ G – PV. Helm-
holtz free energy was developed for constant tempera-
ture systems.

Fundamental equations
The basic balance equations of thermodynamics

relate the heat and work transferred during a process to
a difference in thermodynamic functions such as
enthalpy and entropy. For a closed system, the energy
balance equation is eq 1. Making substitutions for the
heat term (see the definition of entropy) and for the
work term (from Table 1) yields

dU TdS PdV Fdl dA dq

d gzdm r dm

= − + + +

+ ∑ + +






+

ψ ε

µ η ω
r

i i  etc.2
2

2
, ...

Equation 3a is known as the property relationship (Sil-
ver and Nydahl 1977). For the engineering study of
thermodynamics, this relationship is often stated for
systems in which there is only expansive work:

dU = TdS – PdV. (3b)

However, for the study of freezing soil, the property
relationship often used is

dU TdS PdV d= − + ∑ µ ηi i . (3c)

(3a)

* In a reversible process, 
    
dS

Q
T

= δ
.

3

Table 1. Types of reversible work done by thermo-
dynamic systems (Silver and Nydahl 1977).

Generalized Generalized Element
Type of work force  displacement of work

Volumetric P –V PdV

Length F l –Fdl

Surface ψ (surface tension) Ar (area) –ψdAr

Gravitational gz m (mass) –gzdm

Centrifugal –r2ω2/2 m (mass)
  

r
dm

2 2

2

ω

Electrical ε q –εdq

Chemical* µ η –µdη

* µ = chemical potential (see eq 18); η = number of moles.
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For eq 3b and c, respectively, using the definitions
of Gibbs free energy, enthalpy, and Helmholtz free
energy, differentiating and substituting eq 3b or 3c for
dU results in

dG = –SdT + VdP (4a)

or
dG SdT VdP d= − + + ∑ µ ηi i

i
(4b)

dH = TdS + VdP (5a)

or

dH TdS VdP d= − + + ∑ µ ηi i
i

(5b)

dA = –SdT – PdV (6a)

or
dA SdT PdV d= − − + ∑ µ ηi i

i
. (6b)

Equations 3 through 6 are known as the four funda-
mental equations of thermodynamics.

THERMODYNAMIC EQUILIBRIUM

Equilibrium thermodynamic relations are often used
in soil freezing and frost heave models (analytical and
numerical); therefore, their derivations are now present-
ed. For a system undergoing cyclical changes in state,
the process is reversible if, at the end of each cycle, the
surroundings are restored to their original state. At every
stage of this process, the system departs from equilib-
rium only infinitesimally. Thus, the condition for revers-
ibility is an equilibrium condition (e.g., Castellan 1983):

TdS = δQrev (7a)

and for irreversible (natural) processes

TdS > δQrev. (7b)

The composite functions are used to describe equi-
librium and spontaneous transformation conditions of
systems under the constraints for which they were
defined. For example, at constant temperature, d(TS) =
TdS, and applying eq 7 (TdS ≥ δQ) together with the
first law and the substitution that δQ = TdS = d(TS)
results in

–dU + d(TS) ≥ δW (8)

–d(U – TS) ≥ δW (9)

or –dA ≥ δW. (10)

In the absence of work, the isothermal equilibrium
condition is dA = 0; furthermore, a spontaneous pro-
cess produces negative Helmholtz free energy. In other
words, a constant temperature system minimizes Helm-
holtz free energy.

A similar derivation can be done for constant pres-
sure and temperature processes to show that the spon-
taneity condition is

–dG ≥ δW. (11)

Thus, at constant temperature and pressure and in the
absence of work, the equilibrium condition is dG = 0;
and, a spontaneous process produces negative Gibbs
free energy.

Thermal equilibrium
Substituting TdS ≥ δQ into the first law results in

–dU – δW + TdS ≥ 0. (12)

For an isolated system, dU = δW = δQ = 0; thus, eq
12 applied to an isolated system is

dS ≥ 0. (13)

Since dS Q T= ( )δ rev / , if a positive quantity of heat
passes from region a to b within an isolated system,
then

dS dS dS
T T

Q= + = −




a b

b a
rev

1 1 δ (14)

and for a spontaneous process, dS > 0; therefore, Ta >
Tb. At equilibrium, dS = 0 and Ta = Tb. Thus, a system
in thermal equilibrium has the same temperature in all
regions, and when it is not in equilibrium, heat flows
from regions of high temperature to low temperature.

Mechanical equilibrium
For a constant-volume, constant-temperature system

divided into regions a and b, if region a expands revers-
ibly by dVa then region b contracts by dVb = –dVa.
According to eq 6a,  (∂A/∂V)T = –P, or dA = –PdV, and
dA = dAa+ dAb. Therefore, dA = (Pb – Pa) dVa. Since
δW = 0 (for a constant volume), from eq 10 and the
second law, dA ≤ 0 and, therefore, Pa > Pb. In other
words, for a spontaneous expansion of region a into b,
the pressure must be greater in a. At equilibrium, Pa =
Pb. This is a lot of work to get an obvious result, but
this type of analysis is helpful when less intuitive pro-
cesses are described as below.

For a constant-volume, constant-entropy system
consisting of two phases a and b with an interface, ψ,

4
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between them (e.g., ice and water), the total energy is
the sum of the energy of the various parts:

dU dU dU dU =   +   +  .a b Ψ (15)

The surface work term (see Table 1) is ΨdAr; there-
fore,

dU = –PadVa– PbdVb + ΨdAr. (16)

At equilibrium, dU = 0, therefore

(Pa – Pb)dVa = ΨdAr. (17)

Thus, at equilibrium there is a pressure difference across
the interface unless it is planar. If the interface is pla-
nar, dAr = 0 and Pa = Pb. The difference in pressure
across a curve interface is the physical reason for cap-
illary rise and depression of liquids in porous materials
(e.g., Castellan 1983).

Chemical equilibrium

Conditions for chemical equilibrium
From eq 4b,

∂
∂







=
≠

G

η ηi T,P,
i

j i

µ . (18)

The chemical potential of a substance, µi, is the Gibbs
free energy increase per mole of substance i added to a
system at constant temperature, pressure, and numbers
of moles of other substances (j) present in the system.
For a system consisting of a pure substance i, dG =
–SdT + VdP (eq 4a), and this can be divided by ηi so that

d SdT VdPµ i = − + (19)

where S  and V are the entropy and volume per mole
of substance i, respectively.

For a system at constant temperature, pressure, and
numbers of moles, j, and divided into two regions, a
and b:

dG dG dG d d= + = +a b ia i ib iµ η µ η . (20)

If dηi moles go into b, and dηi moles leave a, then dGa
= µia (–dηi); dGb = µibdηi and dG = (µib – µia)dηi.

A spontaneous reaction requires that dG be nega-
tive, therefore µib < µia, and matter flows from regions
of high chemical potential to low chemical potential.
At equilibrium, dG = 0 and µib = µia. Thus, chemical
potentials for substance i must have the same values
throughout a system in chemical equilibrium.

Properties of chemical potential
Equation 18 shows that the chemical potential of a

component is a function of temperature, pressure, and
amounts of other chemical species. This leads to inter-
esting system behavior. If two regions in the same sys-
tem are at different pressures or temperatures, with all
other properties being held constant, then they will have
different chemical potentials. At constant temperature
and pressure, the chemical potential of a component in
two regions may be different due to different concen-
trations of it. Another property of chemical potential is
that, at constant concentration of a species, a pressure
difference and a temperature difference may compen-
sate each other, thereby maintaining a constant chemi-
cal potential.

Other properties of chemical potential can be deduced.
At constant temperature for a single-component sys-
tem, the pressure dependence derived from eq 4a is dG
= VdP, which can be integrated to obtain

G G T VdPo
P

o

= + ∫( )
P

(21)

where Go  is the Gibbs free energy at one atmosphere
of pressure, Po. For liquids and solids (constant vol-
ume), this relation becomes

G = Go(T) + V(P – Po). (22)

For ideal gases

V
nRT

P
=

and

G G T nRT
P

P
o

o= + 



( ) ln (23)

or

µ µ= + 





o
oT RT

P

P
( ) ln (24)

where µo is the chemical potential of a pure substance
at one atmosphere. For solid, liquid, or gaseous mix-
tures of ideal solutions (i.e., Pi = xiPio, where xi is the
mole fraction of the substance and Pi is its partial pres-
sure)

µ µi i i =  ( ) +  ln .o T, P RT x (25)

The dependence of Gibbs free energy on temperature
at constant pressure can be expressed by using eq 4a,
which yields

∂
∂







= −G

T
S

P
. (26)

5
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The dependence of G/T on temperature at constant
pressure is also of interest, and it is derived by apply-
ing the ordinary rule of differentiation to ∂(G/T)/∂T, eq
26, and using the definition of enthalpy, H, to obtain
(e.g., Castellan 1983)

∂
∂









 = −G

T

T

H

T 2 . (27)

Equation 27 is known as the Gibbs–Helmholtz equa-
tion.

For an equilibrium mixture (i.e., µi is constant) at
constant temperature and pressure,

dG d= ( )∑ µ ηi i
i

(28)

which can be integrated to obtain

∆ ∆G = ( )∑ µ ηi i
i

(29)

For ηinitial = 0 = Ginitial, we obtain

G = ∑ η µi i
i

. (30)

Differentiating eq 23 and setting it equal to eq 4b results
in

η µi i
i

d SdT VdP∑ = − + . (31)

Equation 31 is the Gibbs–Duhem equation. Note that
for constant temperature and pressure,

η µi i
i

d =∑ 0. (32)

Chemical equilibrium between phases
of a single component

For a system in chemical equilibrium containing
more than one phase of a substance, the chemical poten-
tials of the substance in all phases must be equal. For a
system containing a pure substance only, we know from
eq 19 that

∂
∂







= −µ i

PT
S. (33)

Thus, a plot of µ vs. T for any phase will have a slope

of   −S  and equilibrium between phases occurs when
the chemical potentials of both phases are equal (Fig.
1). Proceeding from solid to liquid to vapor, the nega-
tive slopes increase, reflecting the increase in entropy
(eq 33). Figure 1 shows that if the chemical potential
of the liquid phase is lowered (e.g., adding salt to water
lowers the chemical potential of the water—see eq 25),
there will be an accompanying decrease in the freezing
point and increase in the boiling point. From eq 19

∂
∂







=µ i

TP
V . (34)

Consider the equilibrium of a pure substance in two
phases, a and b:

µa(T, P) = µb(T, P). (35)

From eq 34 we know that a pressure increase, dP,
will result in a chemical potential increase, dµ. This
will be accompanied by a change in equilibrium tem-
perature (e.g., Fig. 1). At (T + dT, P + dP), the new
equilibrium condition can be expressed as

µa(T, P) + dµa = µb(T, P) + dµb. (36)

Subtracting eq 36 from 35 results in dµa = dµb, or by
substituting each of these expressions into eq 19 and
setting these equal to each other,

S S dT V V dPb a b a−( ) = −( ) (37)

or

∂
∂







= 





P

T

S

V

∆
∆

. (38)

Equation 38 is known as the Clapeyron equation, an
important equation of equilibrium between two phases
of a substance. Phase diagrams, such as the one for pure
water shown in Figure 2, consist of lines that represent
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Figure 1. Plot of µµµµµ as a function of temperature for a
pure solvent (solid lines). The dashed line represents
the chemical potential of the liquid solvent when sol-
ute i is present. (After Castellan 1983.)
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the pressure and temperature conditions for phases in
equilibrium.

Osmotic pressure
Osmotic pressure, Π, is the pressure required to

maintain equilibrium between a solution and the pure
solvent across a semi-permeable membrane through
which the solvent, but not the solute, can diffuse. The
osmotic pressure is easily determined using the chem-
ical potential requirement of equilibrium. For the sol-
vent on both sides of the membrane,

µ(T, P + Π, x) = µo (T, P). (39)

From eq 25 we know that µ(T, P + Π, x) = µo(T, P + Π)
+ RTlnx. Substituting this into eq 39 results in

µo (T, P + Π) + RTlnx = µo (T, P). (40)

Using eq 34, d V dPo oµ = and integrating from P to
P + Π, we get

µ µo o o
P

T P T P V dP( , ) ( , ) .+ − =
+

∫Π
Π

P

(41)

Substituting eq 41 into 40 yields

V dP RT x
o

P

P

ln
+

∫ + =
Π

0. (42)

For an incompressible solvent in an ideal solution the
molar volume remains constant, and

Π = −RT x

V
o
ln

. (43)

If the solution is dilute, then lnx = ln(1 – x2) = x2, where
x2 is the mole fraction of the solute, and because n2<<n,

− ≈ −x
n

n2
2 (44)

where n refers to the number of moles. Thus, substitut-
ing eq 44 into eq 43 yields

Π = n RT

nV
o

2 (45)

but V nV
o≈ ,  so

Π = c̃RT (46)

where c̃ is the solute concentration (mol m–3). The con-
cept of osmotic pressure is useful in formulating expres-
sions for total soil water pressure because soil water
contains solutes. Furthermore, the influence of soil par-
ticle surfaces on the chemical potential of the soil water
 can be “approximated” as solutes.

Summary
Fundamental thermodynamic principles have been

reviewed in the above sections. The relations and con-
cepts that are particularly useful in studying the physi-
cal processes associated with freezing soil are

1. Thermodynamic equilibrium requires a balance
of thermal, mechanical, and chemical forces. Thermal
equilibrium is reached when temperatures are equal,
mechanical equilibrium is reached when there is a bal-
ance of mechanical forces, and chemical equilibrium
is reached when the chemical potentials of all compo-
nents of the system are equal.

2. The general equation for mechanical equilibrium
between two phases—i.e., the interface is curved, rather
than planar—is (Pa – Pb)dV = ΨdAr (eq 17).

This equation applies to interfaces between all phases
of a substance (solid/liquid, vapor/liquid, and solid/
vapor interfaces) and is the physical reason for capil-
lary rise of liquids in porous materials.

3. The Gibbs–Duhem equation,

η µi i
i

d SdT VdP∑ = − +

(eq 31), is useful when applied to water in freezing soils.
4. The concept of osmotic pressure is useful in for-

mulating expressions for total soil water pressure. This
is because soil water contains solutes; in addition, the
influence of soil particle surfaces can be “approximated”
as solutes. Expressions for the osmotic potential of a
dilute solution are

Π = −RT x

V
o
ln

(eq 45) and Π = c̃RT  (eq 46).
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THERMODYNAMIC TREATMENT
OF FROST HEAVE

Early contributions
The first researchers to make significant progress in

understanding frost heave were Taber (1929, 1930) and
Beskow (1935). Taber (1929, 1930) established with
certainty that frost heave does not occur because of the
expansion of soil water upon freezing. He proved that
pore size influenced the total amount of frost heave for
given freezing conditions and that saturated material
with very small pores retains unfrozen water at several
degrees below freezing. Taber (1929) established that
the pressure from frost heaving is due to the direction
of ice crystal growth, which is, in turn, controlled by
the direction of heat loss. He deduced that slow crystal
growth favored frost heave, and introduced the idea that
water exists in a state of tension.

Taber (1930) treated freezing soils as open systems.
He developed the idea of a gradient in soil moisture
tension that causes water above the water table to flow
to the freezing front. He also observed that the rate of
heave is continuous under constant temperatures applied
at the top and bottom of soil specimens even though
the ice lenses are separate and distinct from each other.

Taber hypothesized that during the growth of an ice
layer, voids underneath it gradually fill with ice, begin-
ning with the larger ones. As the resistance to the flow
of water to the ice lens increases (because of the pores
filling with ice), a new layer of ice begins to form near
the bottom of the zone of the frost penetration. This is
the beginning of the idea of a “frozen fringe,” a zone at
the freezing front where ice has penetrated the pores,
contains no ice lenses, and has very low hydraulic con-
ductivity that can limit rate of heave.

Working independently from Taber, Beskow (1935)
also contributed several important concepts to the under-
standing of soil freezing. However, the English transla-
tion of Beskow’s 1935 report on frost heave is long,
difficult to follow, and uses terms that are not well
defined. Some clarifications of terms that he used are
listed here.*  In Beskow’s report, soil water is referred
to as capillary water, and adsorbed water is called the
water under the radius of influence of the particle. The
term “capillary pressure” or “positive capillary pres-
sure” means soil moisture tension. Effective stress (a
concept that was not yet well-developed) was referred
to as “total compressive force,” or just “pressure.” Two
other things are noted: 1) that Beskow described only
the “saturated capillary fringe” in all of his discussions
that refer to the similarities between soil freezing and

drying, and 2) that in reference to soil water and soil
pressures, Beskow usually (but not always) expressed
them in terms of head.

One of the most important ideas contributed by Bes-
kow (1935) is that soil freezing is similar to soil drying—
in both cases water changes phase and the amount of liq-
uid water in the soil decreases. Thus, water flow from
above the water table to the zone where water is chang-
ing into ice is analogous to flow of water to a zone
where it is evaporating.

In describing soil freezing, Beskow (1935) noted the
freezing point depression of soil water due both to sol-
utes in the water and the “effect of the particle system”
(adsorbed water). He constructed freezing temperature
curves, showing unfrozen water content vs. tempera-
ture and noted that, for saturated fine-grained soils, even
the water in the center of the pores is considerably influ-
enced by the particle surface. Ice crystallization is
favored farther away from a particle surface and the
surface of the ice protrudes down into the pores, with
adsorbed water adjacent to it (Fig. 3). Beskow explained
that when an adsorbed water film becomes thinner, an
increased negative pressure occurs in the unfrozen soil
water that induces water to replenish the film.

Beskow (1935) documented the influence of effec-
tive stress on frost heave. He said that the total com-
pressive force acting on soil particles during freezing
was the sum of the actual load (overburden) pressure
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* These terms and their definitions refer only to Beskow’s report;
they are not necessarily terminology used today. They are pro-
vided for the convenience of those who will read his work.

c:a 0.02 mm

Ice

c:a 0.001 mm

Figure 3. Frost line in two soil types. The upper part
of the figure represents a fine-grained frost-heaving
soil and the lower part of the figure is a coarse-grained
frost-heaving soil (e.g., a coarse silt). The scale of the
upper diagram is about 20 times that of the lower dia-
gram. The arrows show the maximum distance that
water must travel for frost heave to occur. (After Bes-
kow 1935.)



to contents

and the positive capillary pressure (soil moisture ten-
sion). In addition, in the tests he performed, equal
amounts of overburden pressure and soil moisture ten-
sion reduced frost heave rate by the same amount. Be-
skow (1935) also noticed that when the capillary rise
of water in the soil is lower than the distance between
the freezing front and the groundwater table, then the
soil does not heave.

Beskow froze 32.5-mm-diameter by approximately
40-mm-high insulated specimens from the top down
with water available at the base using air temperatures
of –2 to –10°C at the top with 0°C water at the base. He
believed that his experiments showed that for relatively
permeable soils, frost heave rate is fully independent
of rate of freezing. However, the temperature variations
of his experiments were too small, and the freezing was
conducted over too short a time to permit the air tem-
perature variation to produce a noticeable effect on frost
heave rate, and we now know that rate of freezing does
influence frost heave rate (e.g., Loch 1979).

Beskow (1935) found that, for relatively coarse soils,
heave rate drops off rapidly with increasing grain size;
however, for fine soils, heave rate drops off slowly with
decreasing grain size. The curves are shaped roughly
as those shown in Figure 4 (with heave rate being on
the y-axis). Figure 4 shows the rate of capillary rise vs.
particle size. Beskow determined that soil type and
effective stress influenced frost heave. However, his
laboratory freezing tests are not described in detail, and
may be extreme compared to field conditions of freez-
ing. For example, the temperature gradient induced by
–2°C at the top surface of a 40-mm-high specimen with

the bottom held at 0°C (50°C m–1) is more than twice
the maximum temperature gradient measured near the
freezing front by other researchers (e.g., Saarelainen
1992, Vikström 1997).

Everett
D.H. Everett (1961) was one of the first researchers

to use the principles of thermodynamic equilibrium to
describe the processes associated with the freezing of
water in porous media. He wanted to answer why, when
pore spaces are completely filled with ice, further
growth of ice continues and causes either frost damage
(in a porous solid) or frost heave (in soil). He used eq
17 in the form

P P
dA

dV
Ks l sl

r
sl− = 



 =Ψ Ψ ˜ (47)

where Ps is the pressure of the solid crystal, Pl is the
pressure in the surrounding liquid, Ψsl is the interfacial
tension between the solid and the liquid, Ar is the sur-
face area of the phase boundary, V is the volume of the
crystal, and K̃ is the mean curvature of the solid/liquid
interface. Thus, if the solid phase is at a different pres-
sure than the liquid phase, the interface between the
phases is curved. For a pure substance, the equilibrium
state is determined only by Ps, Pl, and the temperature.

Everett presented a simple model of two cylinders
connected by a capillary tube, each closed by a piston
(Fig. 5). Both cylinders are initially filled with water,
and temperatures are lowered so that ice nucleates and
grows in the top cylinder. As freezing proceeds, the pis-
tons move to accommodate expansion of the system.
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Figure 4. Curves of maximum capillary rise of sorted soils as a func-
tion of the average particle diameter for a number of different dis-
tances to the groundwater table. (After Beskow 1935.) Note that units
of measurement of the rate of capillary rise were not provided.
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Once the top cylinder is ice-filled, further heat loss will
result in either 1) upward movement of the upper pis-
ton, with flow of water from the bottom cylinder, or 2)
propagation of ice along the capillary. If the pressures
on the cylinders are equal, Ps = Pl = P, then the inter-
face between phases is planar and ice cannot penetrate
into the capillary. Ice will form in the top cylinder until
all water is removed from the bottom cylinder; i.e., frost
heave will occur. An example of this is needle ice*

growing at the soil surface. When the needles first begin
to grow, there is no overburden and no significant self-
weight, thus no chance for Ps to develop.

If the pressure on the ice phase, Ps, can be main-
tained at a higher level than the liquid, then the chemi-
cal potential of the ice in the cylinder (bulk ice) will
increase. (For example, as the needle ice at the ground
surface grows in length, the weight of the ice exerts a
positive ice pressure in the pores at the soil surface.)
The freezing temperature becomes depressed and ei-
ther the ice will melt or heat will be withdrawn until, at
the new equilibrium temperature, there is a curved inter-
face between the two phases. If the pressure difference
is constant between the ice and the water while further
heat is removed, the bulk ice will again grow in the top
cylinder as described above. If Ps increases to the point
at which the chemical potential of the ice in the piston
exceeds that of a hemispherical cap of ice between the
ice and water in the pore, then ice growth proceeds down
the capillary.

Using the equilibrium condition of eq 47 (and not-
ing that a hemispherical cap has the maximum (∂Ar/
∂V) of various-shaped interfaces), Everett explained that
this maximum pressure (with Pl = 0) is the maximum
heaving pressure that can be reached in porous media.
Thus, he concluded that the maximum heaving pres-
sure is a function of pore size and interfacial energy
between the ice and water. If this heaving pressure
exceeds the overburden pressure in a freezing soil, then
frost heave will occur. Here is a basis for understand-
ing why ice can grow against an overburden pressure.
Because of the pressure difference across the curved
interface, the water can exist at a lower pressure than
the ice on the other side of it. For a hemispherical ice
front in a pore, ∂Ar/∂V = 2/r; therefore, Everett (1961)
concluded that heaving pressure is inversely propor-
tional to the size of the pore radius, r. Note that the
pressure difference maintained across an ice/water inter-
face can arise from a reduction of the liquid water pres-
sure as well as from an increase in the bulk ice pressure.

Everett’s model considered the mechanical equilib-
rium between ice and water in porous materials, but
ignored the soil particle surface effects on the adsorbed
water. As mentioned earlier, a complete thermodynam-
ic equilibrium formulation of the problem would con-
sider thermal, mechanical, and chemical equilibrium.
This was the approach taken by R.D. Miller and his
students (e.g., Miller et al. 1960, Miller et al. 1975),
discussed in the next section.

Miller and Loch
Miller et al. (1960) and Miller et al. (1975) accounted

for the osmotic effects related to films adsorbed on soil
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between ice and water.

       when PL = PS
       when PL – PS <  2/r

       when PL – PS = 2/r

Figure 5. Piston–cylinder model of ice growth. (After Everett 1961.)

*  Everett (1961) referred to the needle-ice as “hoarfrost”; however,
hoarfrost refers to the deposition of ice crystals on objects by direct
sublimation from water vapor.
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particles in the frost heave process by applying the gen-
eralized Clapeyron equation (GCE) to the thermody-
namic equilibrium between ice and water in soil. In
order to clarify that the GCE is based on sound thermo-
dynamics, one of Miller’s students, J.P.G. Loch (1978)
published a detailed derivation of the GCE. That deri-
vation is now summarized.

Using the Gibbs-Duhem equation (eq 31) for soil
ice/water equilibrium, Loch (1978) redefined the chem-
ical potential as the Gibbs free energy per unit mass of
a substance so that ηi refers to mass and not moles of a
substance, i:*

ηwdµw = –SdT + VdP – ηsdµs (48)

where the subscripts w and s refer to water and salt,
respectively. The equation for the chemical potential
for salt in soil water (a form of eq 25) is

µ µs s
s

s= +






o T P
RT

M
x( , ) ln (49)

where µso(T, P) is the chemical potential of the pure
salt at the same temperature and pressure as the sys-
tem, Ms is the molecular weight of the salt, and xs is the
mole fraction of the salt. Making the approximation that

x
M

Ms
w

s

s

w
≈












η
η

we obtain

µ µ η
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w
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M

M

RT

M
( , ) ln ln .

(50)

Differentiating eq 50 with respect to ηs gives dµs =
(RT/Ms)(1/ηs)dηs, or

η µ η
s s

s

s
d RTd

M
=







. (51)

Substituting eq 51 into eq 48 gives

d SdT VdP VRTd
M V

µ η
ηw

s

s w
= − + −







(52)

where S and V are entropy and volume of solutions per
gram of water, respectively. Since the expression in the
parentheses of eq 52 is equal to the concentration of
the solute in solution, c̃ , eq 52 can be rewritten as

d SdT VdP Vdµw = − + − Π (53)

since Π, the osmotic pressure, is equal to RTc̃ .
If the symbol Pw is used to describe the total soil

water potential, then

Pw = P – Π. (54)

Note that P is the pressure of the water excluding os-
motic effects and

d SdT VdPµw w= − + . (55)

Equation 55 is integrated after making the substitu-
tion that at equilibrium,

S
H

T
= (56a)

to obtain

µw
o

= +






+– lnH
T

T
Vpw1

∆

or for small ∆T,

µw
o

w≈ − +H T

T
VP

∆ (56b)

where H is the enthalpy per unit mass of the solution.
In eq 56a, To is the freezing point of pure water and
∆T is the freezing point depression (K).

Assuming that ice contains no solutes, the chemical
potential for pore ice is

µ i
i

o
i i iw

r= − + + ∂
∂







H T

T
V P V

A

V

∆ Ψ . (57)

Setting the chemical potentials of pore ice and water
equal (at equilibrium) results in

−






+ = − + + ∂
∂







H

T
T VP

H T

T
V P V

A

Vo
w

i

o
i i iw

r∆ ∆ Ψ . (58)

Using the following definitions for the pressure of ice,
Pi, and the latent heat of fusion of water per mass,

P P
A

Vi iw
r= + ∂

∂






Ψ (59)

L H Hf i= − (60)

and substituting eq 59 and 60 into eq 58 results in the
equation of chemical equilibrium between pore ice and
water, or the generalized Clapeyron equation:

V P VP L
T

Ti i w f
o

− = −






∆
. (61)

11

* Loch (1978) apparently redefined the chemical potential in this
way in order to arrive at the generalized Clapeyron equation (eq 61)
in a form that is convenient to work with because the specific vol-
ume of a substance is equal to the inverse of its density.
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Note that the osmotic pressure includes the effects
of the diffuse double layer associated with the surface
of soil particles (i.e., adsorbed water) through the pres-
sure term, P (eq 54). Equation 61 was referred to later
by Miller (1978) as the Clapeyron equation; but it is
not the Clapeyron equation one usually finds in Physi-
cal Chemistry texts (i.e., eq 38).

Equations 59 and 61 reveal that equilibrium is a func-
tion of pore size (through the ∂Ar/∂V term), hydrostatic
pressure of the soil water, osmotic pressure (i.e., pres-
ence of solutes and the chemical properties of soil particle
surfaces), and temperature. Changes in any of these vari-
ables result either in change of location of freezing front
or rate of frost heave. For example, if P, Pi, and r are
constant throughout a soil body, but there is a spatial dis-
tribution of temperature, there will be a gradient in Pw,
causing a steady-state flow of water through the system.

This is a more complete formulation of the equilib-
rium between ice and water in soils than Everett’s
(1961). This is because the effects of solutes and the
chemical properties of soil particle surfaces on the pore
water are accounted for through the use of osmotic pres-
sure and the effects of the depressed freezing tempera-
ture are also accounted for. Thus, the equilibrium pres-
sure difference that can be sustained between pore ice
and pore water, as indicated in eq 61, is much greater
than that indicated in eq 47.

Miller
Miller (1978) utilized the concepts described in Loch

(1978) and developed a soil freezing model—predict-
ing frost heave as a function of time, temperatures, and
pressures. Miller applied concepts developed for treat-
ment of soil drying to model freezing of a saturated,
noncolloidal soil. He restricted his modeling efforts to
noncolloidal soil, so that the deformations of the soil–
ice body are due to the formation of ice lenses, and not
compression or expansion of the soil skeleton. This
model, called the rigid ice model, includes a rigid, con-
tinuous body of ice that comes in contact with continu-
ous pore water in a zone called the frozen fringe (Fig.
6). The frozen fringe is the zone below the deepest ice
lens where ice has penetrated the narrowest parts of
larger pores between soil particles. This is similar to
the capillary fringe where air has penetrated the larger
pores in a drying soil. Miller (1978) also defined con-
ditions under which an ice lens will begin to form, and
extended beyond development of the thermodynamic
equilibrium relations in freezing porous materials
(which he utilized) to the transport of mass and heat
through unfrozen and partially frozen soil.

Miller used eq 61 in the form

P P
L

T

T
i

i

w

w
f

oρ ρ
− = −







∆ (62)

where ρi and ρw are the densities of ice and water,
respectively (recall that Pw refers to total soil water
potential). He defined a variable, φ, as the difference
between the ice pressure and the soil water potential
divided by the interfacial tension

φ = − −P Pi w

iwΨ
(63a)

or, for air and water

φa
a w

aw
= − −P P

Ψ
(63b)

where subscript a refers to air. Equation 63a is an
expression for the mean curvature of the ice/water inter-
face in soil pores at equilibrium, and eq 63b applies to
the air/water interface. When there are no ice lenses in
a frozen soil, pore ice and pore water contents depend
on φ:

ϑw(φ) + ϑi(φ) = η (64)

where ϑw refers to volumetric pore water content (note
change in notation), ϑi to volumetric pore ice content,
and η is the total porosity.

Miller noted that the pore pressure, u, has both ice
and water components. Thus, he borrowed an expres-
sion from Bishop and Blight (1963) for the distribution
of pore pressure between the air and water phases and
applied it to ice and water:

u = χ(φ)Pw + [1 – χ(φ)]Pi.  (65)

Miller approximates χ (φ), known as the stress parti-
tion function, as

χ φ φ
η

( )
( )

.≈ ϑw (66)

Using similitude between soil freezing and soil drying,

ϑw(φ) = ϑ w (φa) (67)
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Figure 6. Frozen fringe with ice lens
above. (After O’Neill and Miller 1985.)
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K(φ) = K(φa) (68)

where K is the hydraulic conductivity of the soils (m s–1)
and

χ(φ) = χ(φa). (69)

Using laboratory data for unfrozen water content in a
frozen soil, ϑw, as a function of temperature, along with
all of the relations defined by eq 62 through 69, and
Terzaghi’s equation for effective stress,

σT = σ′ + u. (70)

Equilibrium values of χ, φ, σ′, u, and K(φ) can be pre-
dicted as a function of temperature (or depth) in a freez-
ing soil.

Miller (1978) identified a downward force acting
on the granular skeleton in the freezing soil due to a
vertical pressure gradient in the adsorbed film. This
pressure gradient results from the fact that the top, colder
pores have thinner films and therefore greater curva-
ture and greater differences between the ice and water

pressures than the lower, warmer pores (Fig. 7). That
is, the pore ice pressure increases upwards from the
bottom of the frozen fringe, which causes effective
stress to decrease. Figure 8 depicts profiles of soil water
pressure, effective stress, and pore pressure in the frozen
fringe just prior to ice lens initiation (after Miller 1978).
Ice lens initiation occurs when the effective stress
reaches 0. At this condition, soil particles become incor-
porated into upward moving ice. Thus, the ice lens
initiation condition is similar to that of Everett (1961).
However, the pore pressure that can be generated is
greater than that proposed by Everett (1961) due to sur-
face effects of soil particles as well as temperature gra-
dients in the frozen fringe.

Ice movement within a soil is called regelation
(refreezing), and it involves the melting, transport
around soil grains in adsorbed films, and refreezing of
water. The heat released during the change of phase
from water to ice in freezing soil is far more significant
than the sensible heat transfer. Therefore, Miller ignored
sensible heat transfer during freezing, and accounted
only for heat transfer due to ice formation:

q
T

z
L v= − 



 −∂

∂
λ φ ρ φ( ) ( )i f i (71)

where q is the rate of heat flow in the soils, λ is the
thermal conductivity of the soil, and vi is the volumet-
ric ice flux:

vi(φ) = ϑi(φ)vI  (72)

where vI is the rate of frost heave. In the unfrozen zone,
only heat conduction is considered:

q
T

z
= − ∂

∂






λu . (73)

Equation 71 contains both heat and mass transfer
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terms, thus coupling models of heat and mass transport
in freezing soils. Note that the volumetric ice flux in
soil, described by eq 71, consists of the volumetric ice
content (a function of φ) times the rate of frost heave.
The volumetric ice content can change within the frozen
fringe because of temperature effects as reflected in the
φ value.

Frost heave that occurs once a frozen fringe is formed
is referred to as secondary heaving, while frost heave
with no frozen fringe is primary heaving (assuming an
adequate water supply). With primary heaving, only the
rate of heat loss controls the rate of frost heave, while
with secondary heaving, there is a component of
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hydraulic resistivity influencing frost heave rate (Miller
1972).

To complete his model, Miller (1978) applied the
conservation of mass and energy in the frozen fringe,
along with the relations already mentioned, to obtain
the relations among frost penetration rate, rate of frost
heave, and rate of heat loss. Miller’s rigid ice model
was put into finite element form; some results are
reported in O’Neill and Miller (1985). Equations of the
model were solved for one-dimensional freezing of an
initially unfrozen, saturated soil column. A 153-mm soil
column of silt with a given function of unsaturated
hydraulic conductivity vs. liquid water content was

a. Cumulative frost heave as a
function of time for various val-
ues of overburden pressure.

b. Heave rate (vI), cumula-
tive heave (h), and heave
due to water intake (hw) as
a function of time.

Figure 9. Typical results of Miller’s rigid ice model of frost heave, reported by O’Neill and Miller (1985), for a
saturated silty soil.
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modeled. The specimen was initially at 1°C, then the
top temperature was gradually ramped down to –0.5°C.
The thermal conductivity of the specimen was com-
puted as a geometric mean of the thermal conductivi-
ties of soil solids, ice, and water during freezing. Fig-
ures 9a and b show typical results. The model predicts
behavior of the soil column during freezing and the
values are reasonable.

Black and Miller (1985) applied a simplified ver-
sion of the rigid ice model to laboratory test results on
a silt. They assumed that the liquid water content and
the unsaturated hydraulic conductivities were simple
Brooks-and-Corey-type exponential functions of φ (e.g.,
Brooks and Corey 1964). Heave and frost penetration
rates and temperature gradients in the unfrozen soil were
input variables, while temperature gradients in the fro-
zen soil and heaving pressure were outputs. The model
accurately predicted temperature gradients, but predict-
ed heaving pressures to be about half of those mea-
sured, indicating problems with the experimental pro-
cedure that were later found to exist.*  The rigid ice
model is now available in the form of a MathCad 5.0+
computer program (Black 1995).

The rigid ice model has now been developed into an
engineering tool for prediction of heaving due to one-
dimensional heat loss. Using the rigid ice model as a
basis, Sheng (1994) developed a numerical model of
frost heave. This model, called PC-Heave, predicts
heave for stratified soils and unsaturated layers. Input
variables for PC-Heave are the number of soil layers
and their thicknesses, the dry densities, water contents,
thermal and hydraulic conductivities and percentage
saturation of the soil layers, the boundary temperatures
at the top and the bottom, the depth of the groundwater
table, and one unfrozen water content at a subfreezing
temperature per FSL (a calibration factor). The model
predicts heave, location of ice lenses, frost penetration,
segregation temperature, and suction in the pore water
of the frozen fringe with time.

The modeling equations are the mass and heat bal-
ances at the base of the warmest ice lens and for the
frozen fringe, Darcy’s Law, and the expression for the
pore water pressure in the frozen fringe that incorpo-
rates the generalized Clapeyron equation (Sheng 1994).
The model has been verified using both field and labo-
ratory soil freezing information.

Gilpin
Gilpin (1979, 1980) developed a model very similar

to the rigid ice model. He assumed that the chemical
potential of the water in the adsorbed film is lowered

by the surface effects of the solid:

µL = µLB – µLΨ (74)

where µL is the chemical potential of the liquid in the
film, µLB is the chemical potential of the bulk liquid,
and µLΨ is the depression in the chemical potential from
bulk water caused by the presence of the solid surface.
Gilpin assumed that it had the form of a power law
relationship:

µLΨ= ay–α  (75)

where y is the distance from the soil particle surface
and a and –α could be adjusted as needed.

The chemical potential of the bulk water is given
by (an integrated form of eq 19)

µ µLB Lo L L o L L o= + −( ) − −( )V P P S T T (76)

where µLo is the chemical potential at a reference con-
dition, (Po, To). Substituting eq 75 into eq 74 and 74
into 76 at equilibrium (i.e., µL = µLo) and assuming
that the temperatures of the bulk and film water are
equal leads to the following expression for the varia-
tion of pressure in film water, with a distance from the
solid surface (Fig. 10):

( ) .P P
a

V
yL o

L
− =







−α (77)

15

* Personal communication, Dr. Patrick Black, CRREL, Hanover, New
Hampshire, 1999.

Bulk Water

PL

g

µL

P

µL

Surface

y

Figure 10. Gradient in film water pressure next
to a soil particle as described by Gilpin (1980);
note similarity to ion distribution according to
the diffuse double layer theory.
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Static equilibrium in the film perpendicular to the par-
ticle surface requires that the particle must exert a body
force per unit volume, g, equal to

g
P P

y
= ∂ −

∂
( )

.L o (78)

If the film is not of a uniform thickness, the body
force will drive tangential fluid flow to return the film
to a uniform thickness. Using equilibrium thermody-
namics, Gilpin (1979) then derived the following
expression for the thickness of the film (h) as a func-
tion of temperature, pressure, and surface curvature:

V V P V K L
T T

T
ahss L Lh SL f

L o−( ) + − − = −Ψ ˜ α (79)

where PLh is the difference between the pressure in the
film at the ice/water interface and the reference pres-
sure. Using this model along with experimental results,
Gilpin (1979) concluded that the value of α is approx-
imately 2.

Gilpin (1980) used an approach similar to Miller’s
in developing a model to predict frost heave in soils,
although his model was simpler due to his initial approx-
imations. His model includes the model of the pressure
gradient in the water near a solid/liquid interface
described above. This is similar to the use of osmotic
pressure as described by Loch (1978). Gilpin’s model
is also based on the GCE:

V P V K
L T

V Tss Lh SL
f

s
− =Ψ ∆˜ . (80)

Assuming that Darcy’s law is valid, Gilpin derived
the relationship between driving potential tangential to
soil particle surfaces and flow rate of water in the con-
tinuous liquid phase. The equation that resulted is
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(81)

where Ps is the pressure of the ice phase. Thus (like the
rigid ice model) the flow rate is governed by the ice
pressure gradient, temperature gradient, and hydraulic
conductivity in the frozen fringe. Gilpin assumed that
the pore ice formed a continuous three-dimensional
network, but that it remained stationary. To address the
question of ice lens formation, he used relations among
interface curvature, pressure, and temperature to estimate
the ice pressure at which the force of contact between
two particles will drop to zero. For most situations of
interest, this ice pressure is equal to the overburden
pressure, POB, plus the pressure difference across the
ice/water interface:

P P
RSEP OB

sl= + 





2ψ
. (82)

He estimated the hydraulic conductivity of the frozen
fringe based on simplifying assumptions regarding the
packing of uniform spheres (Gilpin 1980). Figure 11 is
Gilpin’s idealized model of a frozen fringe in a matrix
of uniform spheres, showing a graph of the tempera-
ture and pressure gradients.

Gilpin (1980) developed numerical solutions to his
mathematical model of frost heave for a 100-mm col-
umn. The “soil” was a matrix of 2-µm uniform spheres.
A constant subfreezing temperature was imposed on
the top surface, and a temperature slightly above freez-
ing was imposed on the bottom surface. Gilpin’s results
are qualitatively and quantitatively similar to those
reported in O’Neill and Miller (1985).

Summary of the thermodynamic
formulations of frost heave

Taber (1929) proved that frost heave was not caused
by the volume expansion of water upon freezing, and
introduced the idea that frost heave was dependent on
freezing rate and occurred in a direction perpendicular
to heat flow. Beskow (1935) contributed the important
idea that frost heave is analogous to soil drying and
that in fine-grained soils frost heave is sometimes lim-
ited by water flow in the soils. He also noted that in-
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Figure 11. Gilpin’s idealized model
of the frozen fringe in a matrix of
uniform spheres. (After Gilpin
1980.)
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creasing effective stress (by some combination of low-
ering the water table and increasing the overburden
pressure) reduces the rate of frost heave of a soil, all
other things being equal (Beskow 1935). Beskow incor-
rectly concluded that frost heave rate in saturated soils
was independent of freezing rate, and his generalizations
about frost heave were for a constant rate of freezing.

Everett (1961) applied equilibrium concepts to
explain frost heave. He considered the mechanical equi-
librium between pore ice and pore water, thereby con-
cluding that the maximum pressure difference in a heav-
ing soil is determined by the smallest pore sizes. This
was an important theoretical advancement; it provided
a qualitative explanation for what is now known as pri-
mary frost heaving. However, he did not consider tem-
perature and chemical effects that can result in even
smaller radii of curvature between ice and water in soil
pores (leading to greater ice–water pressure differences).

Miller et al. (1960), Miller et al. (1975), and Loch
(1978) developed a more complete thermodynamic equi-
librium of pore ice and water; thus, chemical and ther-
mal equilibrium are included. The Generalized Clapey-
ron Equation, based on the equilibrium of ice and water
in soils is utilized by the thermodynamically based
models of Miller (1978) and Gilpin (1980).

Miller (1978) and Gilpin (1980) used the equilibri-
um relationships as described by Loch (1978) and add-
ed heat and mass transfer in the frozen fringe to model
frost heave. Darcy’s Law and Fourier’s Law describe
heat and mass transfer in the frozen fringe, respectively,
and mass flow and heat flow are coupled by one equa-
tion that describes heat transfer in the frozen soil. Ice
lenses start to grow when the effective stress in the fro-
zen fringe becomes zero (Miller 1978, Gilpin 1980).
The rigid ice model assumes that ice is one continuous
rigid body that grows by regelation (Miller 1978).
Gilpin’s model also assumes that the ice forms a con-
tinuous three-dimensional network, but it remains sta-
tionary in the frozen fringe. The main difference between
the models is that Gilpin made a few reasonable sim-
plifying assumptions that allowed the model to be pro-
grammed rather easily. However, more recent work with
the rigid ice model has made it relatively easy to use (e.g.,
Black 1995). Both models predict the same qualitative
frost heave behavior, and are similar quantitatively. The
rigid ice model is also the basis for the more recently
developed numerical model used to predict frost heave
in the field, known as PC heave (Sheng 1994).

SUMMARY OF CURRENT UNDERSTANDING
OF FROST HEAVE

In the introduction of this report the idea that the
frost heave of soils can be understood from the stand-

point of thermodynamics was introduced. Thermodynam-
ic fundamentals and thermodynamic equilibrium con-
ditions are presented in the sections “Thermodynamic
fundamentals” and “Thermodynamic equilibrium,”
respectively. In “Thermodynamic treatment of frost
heave,” the modeling of frost heave based on equilib-
rium thermodynamics was briefly presented. In this sec-
tion, a brief summary of the current understanding of
frost heave, based on the work reviewed above, is pre-
sented without reference to any equations. This is
intended to help readers better understand frost heav-
ing. It makes use of similarities between freezing and
drying since most readers are more comfortable think-
ing about the evaporation of water from soils than about
frost heave.

Drying is due to evaporation, or the conversion of
water to vapor by the addition of heat, whereas freez-
ing is the conversion of liquid to solid by the removal
of heat. Conditions required for evaporation of water
from soil include 1) a supply of heat, 2) a means of
transporting the vapor away from the pores, and 3) a
supply of water. Conditions required for frost heave
include 1) a removal of heat, 2) a means of transport-
ing the ice away from the pores (i.e., the ice lenses),
and 3) a supply of water. (Note, however, that the effec-
tive stress must become zero in order for an ice lens to
initiate—this is discussed in detail later.)

It may also be helpful to keep in mind the differences
between the capillary fringe and the frozen fringe. The
capillary fringe is the soil just above the water table
where water rises up through capillary action. This layer
ranges in thickness from zero to a meter or so, and it
depends on the pore sizes of the materials. In a soil that
frost heaves, recall that the frozen fringe is the soil just
below the bottommost ice lens and above the unfrozen
soil where water and ice coexist in soil pores.

Consider evaporation from soils. If the water in the
pores of the capillary fringe is in equilibrium with the
water vapor across curved liquid/vapor interfaces there
is no movement or phase change of water (i.e., no net
evaporation). If water vapor is removed from the pores
by convection, for example, liquid water will change
phase to replace the vapor and water will flow up
through the soil pores to replenish the liquid water. If
the rate of water loss due to phase change is matched
by the rate of water flow to replenish the liquid water,
no change in the water distribution of the capillary fringe
occurs. If the soil at the location of phase change cannot
replenish the water for the given rate of heat addition,
(e.g., due to low hydraulic conductivity), the capillary
fringe will increase in depth and/or thickness.

Frost heave occurs by a process very similar to soil
freezing. In freezing soils, pore water is in equilibrium
with ice across curved liquid/solid interfaces. However,
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unlike the liquid/vapor interface in soil pore, the liquid/
ice interface is such that the ice can exert a positive pres-
sure on the soil skeleton. When the pore pressures in a
freezing soil reach the soil strength at that location (i.e.,
the effective stress becomes zero), an ice lens initiates.
Once an ice lens is established, liquid water is removed
from the pores because of the phase change and water
flows up through the soil to replenish the liquid water.
The water flows through unfrozen soil and through the
frozen fringe to reach the ice lens. If the rate of water
loss due to phase change is matched by the rate of water
flow to replenish the liquid water, no change in the water
distribution of the frozen fringe occurs and the ice lens
will continue to grow in thickness. If the hydraulic con-
ductivity of the soil limits the rate of water replenishment
to the ice lens for the given rate of heat loss, soil water will
freeze at increasing depths with associated changes in the
depth and thickness of the frozen fringe. In addition, if
there is a location in the frozen fringe at which the effec-
tive stress reaches zero, a new ice lens will begin to devel-
op. The new ice lens will grow at a faster rate than the one
above it because the hydraulic conductivity of soil imme-
diately below is greater, although the ice lenses above the
new one may continue to grow.

The frozen fringe thickness depends on the tempera-
ture gradient, overburden pressure, and the specific soil.
High overburden pressure and low temperature gradi-
ents increase the thickness of the frozen fringe. The ice
is a continuous body from the frozen fringe up through
the ice lens, and it moves by regelation, or continuous
ice–water phase change, accompanied by locally circu-
lating liquid flow.
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Thermodynamic equilibrium requires a balance of thermal, mechanical, and chemical forces. The general equation for mechanical
equilibrium between two phases describes capillary effects in porous materials, important in both unsaturated water flow and in under-
standing ice/water interfaces in freezing soil. The Gibbs–Duhem equation, which relates changes in chemical potential of a substance to
changes in temperature, pressure, and presence of other chemicals, is of critical importance in understanding the flow of water in
freezing soils. Osmotic pressure, related to the chemical potential of the substance, is useful in formulating expressions for total soil
water pressure because soil water contains solutes, and the influence of soil particle surfaces can be “approximated” as solutes. It is the
gradient in the total soil water pressure that drives flow to the freezing front in soils. The generalized Clapeyron equation, based on the
thermodynamic equilibrium of ice and water in soils (e.g., Loch 1978), is utilized by the thermodynamically based models of Miller
(1978) and Gilpin (1980). In these models Fourier’s Law and Darcy’s Law describe heat and mass transfer in the frozen fringe, respec-
tively, and mass flow and heat flow are coupled by one equation that describes heat transfer in the frozen soil. Ice lenses start to grow
when the effective stress in the frozen fringe becomes zero (Miller 1978, Gilpin 1980). Once an ice lens is established, liquid water is
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Soil freezing
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removed from the adjacent pores because of phase change, and water flows up through the soil to replenish the
liquid water. If the rate of water loss caused by phase change is matched by the rate of water flow to replenish the
liquid water, the ice lens will continue to grow in thickness. If the hydraulic conductivity of the soil limits the rate of
water replenishment to the ice lens for the given rate of heat loss, soil water will freeze at increasing depths with
associated changes in the depth and thickness of the frozen fringe.
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